A New and Convenient Wittig-type Reaction for the Preparation of Pyrromethenone Derivative

Hideki KINOSHITA,* Hla NGWE, Kazuhiro KOBORI, and Katsuhiko INOMATA*

Department of Chemistry, Faculty of Science, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-11

The reaction of 5-(p-toluenesulfonyl)-3,4-disubstituted Δ^3 -pyrrolin-2-one with aldehydes in the presence of tributylphosphine and 1,8-diazabicyclo[5.3.0]undec-7-ene gave the corresponding 5-exomethylene compounds in good yields. A pyrromethenone derivative as a potential equivalent to C/D ring component of phytochromobilin dimethyl ester was effectively prepared by means of the present method.

In the previous papers, $^{1)}$ we have reported that N-(p-toluenesulfonylmethyl)-p-toluenesulfonamide and N-(2-methylthio-1-p-toluenesulfonylethyl)methanesulfonamide react with a variety of nucleophiles in the presence of a base to afford the corresponding substitution products through elimination and addition process in good yields. In the preceding paper, we also described in this connection that 3-methyl-5-(p-toluenesulfonyl=Ts)-4-p-tolyl- Δ^3 -pyrrolin-2-one (1), which is prepared regioselectively by hydrolysis of 2-bromo-3-methyl-5-(p-toluenesulfonyl)-4-tolylpyrrole in aqueous trifluoroacetic acid, reacts with various nucleophiles such as alcoholate, thiolate, amine, and organocopper reagent to give the corresponding substitution products in high yields. $^{2)}$ Herein we wish to report the Wittig-type reaction of compound 1 with various aldehydes for the preparation of the corresponding 5-exomethylene derivatives (2) including a pyrromethenone derivative (5).

To a mixed solution of 1, an equimolar amount of benzaldehyde, and two molar amounts of tributylphosphine (PBu₃)³⁾ in dry THF was added slowly a solution of an equimolar amount of 1,8-diazabicyclo[5.3.0] undec-7-ene (DBU) in dry THF at room temperature. After stirring for 5.5 h and separation by a preparative TLC (SiO₂, hexane:AcOEt =3:1 V/V), (E)-and (Z)-5-exomethylene compounds 2a were obtained in 43% and 21% yields (total yield: 64%), respectively (Run 1 in Table 1). The E-isomer thus obtained was readily converted to the thermodynamically favored Z-isomer by treatment with iodine in CH_2Cl_2 at room temperature in quantitative yield. In a similar way, the products 2b-j were prepared in good yields as shown in Table 1.⁴⁾

Next, the present method was employed for the condensation of the pyrrolinone 3 with the aldehyde 4⁵⁾ as shown below to afford the desired product 5 with Z-configuration, which is regarded as a potential equivalent to

Run	Aldehyde (mol. amount)		DBU (mol. amount)	Conditions	Total Yield / %	Product ^{a)} _Z	Ratio of Z / E isomers ^{b)}
1	<_у−сно	(1)	1	r.t., 5.5 h	64	2 a	33 / 67
2	сн₃-{_>-сно	(1)	1	r.t., 10 min	82	2 b	32 / 68c)
3	o₂n -{_} -cho	(1)	1	r.t., 10 min	50	2 c	63 / 37 ^{d)}
4	Вг-СНО	(1)	1	r.t., one)	56	2 d	Z only
5	PhCH ₂ O-CHO	(2)	1	r.t., on ^{e)}	54	2 e	48 / 52 ^{c)}
6	СУ-сно	(3)	2	r.t., 2 d	52	2f	67 / 33
7	€Дсно	(2)	2	r.t., 2.5 h	85	2 g	42 / 58 ^{c)}
8	(E)-PhCH=CH-CHO	(2)	2	r.t., on ^{e)}	87	2 h	f)
9	EtO2C-CHO	(2)	2	r.t., 2 d	98	2 i	55 / 45
10	СН3-СНО	(10)	2	r.t., one)	56	2j	63 / 37

Table 1. The Reaction of 1 with Various Aldehydes

a) All the products gave the satisfactory spectral data. b) NOE was observed for the protons of ortho-position of tolyl group of Z-isomer by irradiation on the exoolefinic proton, but not for those of E-isomer. c) E-isomer was partially isomerized to Z-isomer during silica gel TLC separation. d) Obtained as a mixturte of Z- and E-isomers. The ratio was determined by 400 MHz ¹H-NMR spectrum. e) Means overnight. f) Not determined.

C/D ring component of phytochromobilin dimethyl ester.⁶⁾

As mentioned above, it was found that the tosyl group at position 5 of 1 plays an important role to produce the Wittig-type intermediate in the presence of tributylphosphine. Related works directed toward the synthesis of bilins are undertaking in our laboratory.

References

- 1) H. Kinoshita, K. Inomata, M. Hayashi, T. Kondoh, and H. Kotake, *Chem. Lett.*, **1986**, 1033; H. Kinoshita, S. Tanaka, and K. Inomata, *ibid.*, **1989**, 1107.
- 2) H. Kinoshita, Y. Hayashi, Y. Murata, and K. Inomata, see the preceding report of this issue.
- 3) When a small excess molar amounts of triphenylphosphine was used instead of PBu₃ no reaction took place.
- 4) The reason for variation of E/Z ratios of 2a-j is unclear, but it may reflect kinetically favored formation of E-isomer as well known for phosphonium ylides and an involvement of a thermodynamic equilibrium between E- and Z-isomers of 2 under the reaction conditions and/or during the work-up procedure; J. Fuhrhop and G. Penzin, "Organic Chemistry," Verlag Chemie, Weinheim (1983), p.28.
- 5) A. Gossauer and P. Miehe, Ann., 1974, 352.
- 6) J. P. Weller and A. Gossauer, Chem. Ber., 113, 1603 (1980).

(Received March 25, 1993)